BZOJ 2693: jzptab

Description

pic

Input

一个正整数T表示数据组数

接下来T行 每行两个正整数 表示N、M

Output

T行 每行一个整数 表示第i组数据的结果

Sample Input

1
2
1
4 5

Sample Output

1
122

HINT

T <= 10000

N, M<=10000000

Source

版权所有者: 倪泽堃

Solution

莫比乌斯反演.pdf (by PoPoQQQ)

Code

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = 100000009ll;
const int MAXN = 10000009;
LL N, M, pre[MAXN], u[MAXN];
int cnt = 0, P[700000];
bool vis[MAXN];
inline LL Sum(LL x, LL y) { LL a = x*(x+1ll)/2ll, b = y*(y+1ll)/2ll; a%=mod;b%=mod; return a*b%mod; }
void Linear_Shaker(LL N) {
    u[1] = 1; pre[1] = 1;
    for (LL i = 2; i <= N; ++i) {
        if (!vis[i]) {
            P[++cnt] = i;
            u[i] = -1;
            pre[i] = 1ll - i;
        }
        for (int j = 1; j <= cnt && (LL)P[j] * i <= LL(N); ++j) {
            vis[i * P[j]] = true;
            if (i % P[j] == 0) {
                u[i * P[j]] = 0;
                pre[i * P[j]] = pre[i];
                break;
            }
            else {
                u[i * P[j]] = -u[i];
                pre[i * P[j]] = pre[i] - pre[i] * P[j];
            }
        }
    }
    for (LL i = 1; i <= N; ++i) pre[i] = (pre[i-1] + pre[i] * i % mod + mod) % mod;
}
int main() {
    Linear_Shaker(10000000);
    int T;
    scanf("%d", &T);
    while (T--) {
        scanf("%lld%lld", &N, &M);
        if (N > M) swap(N, M);
        LL ret = 0LL;
        for (LL i = 1LL, last; i <= N; i = last + 1LL) {
            last = min(N / (N / i), M / (M / i));
            ret += (pre[last] - pre[i - 1] + mod) % mod * Sum(N / i, M / i) % mod;
        }
        printf("%lld\n", (ret + mod) % mod);
    }
}